Math 304 Sample Final

Name:

This exam has 11 questions, for a total of 150 points.
Please answer each question in the space provided. Please write full solutions, not just answers. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	10	
2	15	
3	10	
4	10	
5	10	
6	20	
7	20	
8	15	
9	10	
10	15	
11	15	
Total:	150	

Question 1. (10 pts)

Determine the following statements are true or false.
(a) If B is diagonalizable, then B^{2} is also diagonalizable.
(b) If $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}$ span \mathbb{R}^{8}, then n must be 8.
(c) If $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}$ are linear independent in \mathbb{R}^{7}, then n must be at most 7 .
(d) Suppose that A is a diagonalizable 5×5 matrix. If $A^{5}=0$, then A must be the zero matrix.
(e) Suppose \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} form a basis of \mathbb{R}^{3}, then $\vec{v}_{1},\left(\vec{v}_{1}+\vec{v}_{2}\right)$ and $\left(\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}\right)$ also form a basis of \mathbb{R}^{3}.

Question 2. (15 pts)

(a) Let A be a (4×4) matrix. We view A as a linear mapping $\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$. Suppose $\operatorname{det}(A) \neq 0$. What is the dimension of the range of A ? Justify your answer.
(b) Suppose $F: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ is linear mapping. Is it possible that $\operatorname{dim} \operatorname{ker} F=0$? Justify your answer.
(c) Let $B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear mapping. What are the possible integer values that $\operatorname{dim}(\operatorname{ker} B)$ can take? List all possibilities.

Question 3. (10 pts)
Find the determinant of

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Question 4. (10 pts)
Find all eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
4 & 2-i \\
2+i & 0
\end{array}\right]
$$

Question 5. (10 pts)
Given the vectors

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], u_{2}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right], u_{3}=\left[\begin{array}{l}
1 \\
5 \\
8 \\
1
\end{array}\right]
$$

in \mathbb{R}^{4}. Determined whether $v=(3,0,1,4)^{T}$ is in the span of u_{1}, u_{2}, u_{3}.

Question 6. (20 pts)
Given the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{array}\right]
$$

(a) Find the reduced row echelon form of A.
(b) Find a basis for the kernel of A.
(c) Find a basis for the range of A.

Question 7. (20 pts)

Determine whether the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is diagonalizable. If yes, find a nonsingular matrix S and a diagonal matrix D such that $A=S D S^{-1}$.

Question 8. (15 pts)

Let V be the subspace of \mathbb{R}^{4} spanned by

$$
\vec{v}_{1}=\left[\begin{array}{l}
0 \\
4 \\
0 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
4 \\
5 \\
8 \\
4
\end{array}\right] .
$$

(a) Use Gram-Schmidt process to find an orthonormal basis of V.
(b) Find the projection of

$$
\vec{x}=\left[\begin{array}{c}
3 \\
-1 \\
5 \\
0
\end{array}\right]
$$

onto V.

Question 9. (10 pts)
Let $\mathbb{P}_{2}=\{$ all polynomials of degree $\leq 2\}$. We define the following inner product on \mathbb{P}_{2} :

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Find the angle between $x+1$ and x^{2}.

Question 10. (15 pts)

Let $V=\operatorname{span}\left(e^{x}, e^{-x}, x e^{x}, x e^{-x}\right)$ be a subspace of C^{∞}. We know that V is a vector space with a basis

$$
e^{x}, e^{-x}, x e^{x}, x e^{-x}
$$

Let us denote this basis by \mathfrak{B}. Let

$$
T(f)=2 f-f^{\prime}
$$

be a linear transformation from V to V.
(a) Find the matrix representation of T with the basis \mathfrak{B}.
(b) Is T nonsingular? Justify your answer.

Question 11. (15 pts)

The eigenvalues and corresponding eigenvectors of the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$ are $\lambda_{1}=1$ with $v_{1}=(1,0,0)^{T}, \lambda_{2}=2$ with $v_{2}=(1,1,0)^{T}$ and $\lambda_{3}=3$ with $v_{3}=(1,2,1)^{T}$.
(a) Find the general solution to the system

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

(b) Find a specific solution $\mathbf{x}(t)$ such that

$$
\mathbf{x}(0)=\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
1
\end{array}\right]
$$

when $t=0$.

